Skip to main content

Posts

Showing posts with the label probiotics

Bacillus subtilis

  Related Articles Siahmoshteh F, Siciliano I, Banani H, Hamidi-Esfahani Z, Razzaghi-Abyaneh M, Gullino ML, Spadaro D. Efficacy of Bacillus subtilis and Bacillus amyloliquefaciens in the control of Aspergillus parasiticus growth and aflatoxins production on pistachio . Int J Food Microbiol. 2017 Aug 2;254:47-53. doi: 10.1016/j.ijfoodmicro.2017.05.011. Epub 2017 May 15. PMID: 28531554. Ben Khedher S, Kilani-Feki O, Dammak M, Jabnoun-Khiareddine H, Daami-Remadi M, Tounsi S. Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. C R Biol. 2015 Dec;338(12):784-92. doi: 10.1016/j.crvi.2015.09.005. Epub 2015 Nov 10. PMID: 26563555. Rhayat Lamya, Maresca Marc, Nicoletti Cendrine, Perrier Josette, Brinch Karoline Sidelmann, Christian Sonja, Devillard Estelle, Eckhardt Erik - Effect of Bacillus subtilis Strains on Intestinal Barrier Function and Inflammatory Response - Frontiers in Immunology VOLUME10 2019 DOI=10.3389/

Tetragenococcus halophilus

  Tetragenococcus halophilus is a halophilic lactic acid bacterium active in the fermentation processes of soy sauce, miso, fish sauce and salted anchovies. Related Articles PROBIOTICS - TYPES AND EFFECTS OF LACTIC ACID BACTERIA - AZ Sportivo Performance & AZSP Healing

Lactococcus lactis

  Lactococcus lactis is a Gram-positive bacterium used extensively in the production of buttermilk and cheese, but has also become famous as the first genetically modified organism to be used alive for the treatment of human disease. L. lactis cells are cocci that group in pairs and short chains, and, depending on growth conditions, appear ovoid with a typical length of 0.5 - 1.5 µm. L. lactis does not produce spores (nonsporulating) and are not motile (nonmotile). They have a homofermentative metabolism, meaning they produce lactic acid from sugars. They've also been reported to produce exclusive L-(+)-lactic acid. However, reported D-(−)-lactic acid can be produced when cultured at low pH. The capability to produce lactic acid is one of the reasons why L. lactis is one of the most important microorganisms in the dairy industry. Based on its history in food fermentation, L. lactis has generally recognized as safe (GRAS) status, with few case reports of it being an opportuni

Pediococcus acidilactici

  Related Articles Antidiabetic Effects of Pediococcus acidilactici pA1c on HFD-Induced Mice Miriam Cabello-Olmo, María Oneca, María José Pajares, Maddalen Jiménez, Josune Ayo, Ignacio J. Encío, Miguel Barajas, Miriam Araña Nutrients. 2022 Feb; 14(3): 692. Published online 2022 Feb 7. doi: 10.3390/nu14030692 PMCID: PMC8839473 Anti-Obesity Efficacy of Pediococcus acidilactici MNL5 in Canorhabditis elegans Gut Model Kaliyan Barathikannan, Ramachandran Chelliah, Fazle Elahi, Akanksha Tyagi, Vijayalakshmi Selvakumar, Paul Agastian, Mariadhas Valan Arasu, Deog-Hawn Oh Int J Mol Sci. 2022 Feb; 23(3): 1276. Published online 2022 Jan 24. doi: 10.3390/ijms23031276 PMCID: PMC8835910 Lipid-Lowering Effects of Pediococcus acidilactici M76 Isolated from Korean Traditional Makgeolli in High Fat Diet-Induced Obese Mice Yeon-Jeong Moon, Sang-Ho Baik, Youn-Soo Cha Nutrients. 2014 Mar; 6(3): 1016–1028. Published online 2014 Mar 7. doi: 10.3390/nu6031016 PMCID: PMC396717

Leuconostoc mesenteroides

  Leuconostoc mesenteroides is a species of lactic acid bacteria associated with fermentation, under conditions of salinity and low temperatures (such as lactic acid production in fermented sausages). In some cases of vegetable and food storage, it was associated with pathogenicity (soft rot, slime and unpleasant odor). L. mesenteroides is approximately 0.5-0.7 µm in diameter and has a length of 0.7-1.2 µm, producing small grayish colonies that are typically less than 1.0 mm in diameter. It is facultatively anaerobic, Gram-positive, non-motile, non-sporogenous, and spherical. It often forms lenticular coccoid cells in pairs and chains, however, it can occasionally forms short rods with rounded ends in long chains, as its shape can differ depending on what media the species is grown on. L. mesenteroides grows best at 30°C, but can survive in temperatures ranging from 10°C to 30°C. Its optimum pH is 5.5, but can still show growth in pH of 4.5-7.0. Related Articles A

Lactobacillus brevis

  Related Articles Lactobacillus brevis 23017 Relieves Mercury Toxicity in the Colon by Modulation of Oxidative Stress and Inflammation Through the Interplay of MAPK and NF-κB Signaling Cascades Xinpeng Jiang, Shanshan Gu, Di Liu, Lili Zhao, Shuang Xia, Xinmiao He, Hongyan Chen, Junwei Ge Front Microbiol. 2018; 9: 2425. Published online 2018 Oct 12. doi: 10.3389/fmicb.2018.02425 PMCID: PMC6194351 Topical treatment with probiotic Lactobacillus brevis CD2 inhibits experimental periodontal inflammation and bone loss Tomoki Maekawa, George Hajishengallis J Periodontal Res. Author manuscript; available in PMC 2015 Dec 1.Published in final edited form as: J Periodontal Res. 2014 Dec; 49(6): 785–791. Published online 2014 Feb 1. doi: 10.1111/jre.12164 PMCID: PMC4119090 Lactobacillus plantarum and Lactobacillus brevis Alleviate Intestinal Inflammation and Microbial Disorder Induced by ETEC in a Murine Model Xuebing Han, Sujuan Ding, Yong Ma, Jun Fang, Hongmei J

Limosilactobacillus

  Limosilactobacillus is a thermophilic and heterofermentative genus of lactic acid bacteria created in 2020 by splitting from Lactobacillus. The name is derived from the Latin limosus "slimy", referring to the property of most strains in the genus to produce exopolysaccharides from sucrose. The genus currently includes 31 species or subspecies, most of these were isolated from the intestinal tract of humans or animals. Limosilactobacillus reuteri has been used as a model organism to evaluate the host-adaptation of lactobacilli to the human and animal intestine and for the recruitment of intestinal lactobacilli for food fermentations. Limosilactobacilli are heterofermentative and produce lactate, CO2, and acetate or ethanol from glucose; several limosilactobacilli, particularly strains of Lm. reuteri convert glycerol or 1,2-propanediol to 1,3 propanediol or propanol, respectively. Most strains do not grow in presence of oxygen, or in de Man, Rogosa Sharpe (MRS) mediu

Lactiplantibacillus plantarum

  Related Articles Lactobacillus plantarum Reduces Low-Grade Inflammation and Glucose Levels in a Mouse Model of Chronic Stress and Diabetes Hyun Seong Youn, Jong-Hwa Kim, Ji Soo Lee, Yeo Yeong Yoon, Seong Jun Choi, Joo Young Lee, Wonyong Kim, Kwang Woo Hwang Infect Immun. 2021 Aug; 89(8): e00615-20. Prepublished online 2021 May 17. Published online 2021 Jul 15. doi: 10.1128/IAI.00615-20 PMCID: PMC8284940 Dendritic Cells Targeting Lactobacillus plantarum Strain NC8 with a Surface-Displayed Single-Chain Variable Fragment of CD11c Induce an Antigen-Specific Protective Cellular Immune Response Jing Liu, Guilian Yang, Haibin Huang, Chunwei Shi, Xing Gao, Wentao Yang, Zan Zhang, Yang Liu, Ke Xu, Jianzhong Wang, Yuanhuan Kang, Yanlong Jiang, Chunfeng Wang Infect Immun. 2020 Feb; 88(2): e00759-19. Prepublished online 2019 Nov 18. Published online 2020 Jan 22. doi: 10.1128/IAI.00759-19 PMCID: PMC6977127 Immunomodulatory Effects of Lactobacillus plantarum on Infl