Skip to main content

Anthocyanin

 


Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells Poulose SM, Fisher DR, Larson J, Bielinski DF, Rimando AM, Carey AN, Schauss AG, Shukitt-Hale B J Agric Food Chem. 2012 Feb 1;60(4):1084-93. doi: 10.1021/jf203989k. Epub 2012 Jan 20. PMID: 22224493.
Pharmacokinetics of anthocyanins and antioxidant effects after the consumption of anthocyanin-rich acai juice and pulp (Euterpe oleracea Mart.) in human healthy volunteers Mertens-Talcott SU, Rios J, Jilma-Stohlawetz P, Pacheco-Palencia LA, Meibohm B, Talcott ST, Derendorf H. J Agric Food Chem. 2008 Sep 10;56(17):7796-802. doi: 10.1021/jf8007037. Epub 2008 Aug 12. PMID: 18693743
Antioxidant capacity and other bioactivities of the freeze-dried Amazonian palm berry, Euterpe oleraceae mart. (acai). Schauss AG, Wu X, Prior RL, Ou B, Huang D, Owens J, Agarwal A, Jensen GS, Hart AN, Shanbrom E. J Agric Food Chem. 2006 Nov 1;54(22):8604-10. doi: 10.1021/jf0609779. PMID: 17061840
Inhibition of lipid peroxidation and structure-activity-related studies of the dietary constituents anthocyanins, anthocyanidins, and catechins. Seeram NP, Nair MG. J Agric Food Chem. 2002 Sep 11;50(19):5308-12. doi: 10.1021/jf025671q. PMID: 12207466
Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases Roberto Mattioli, Antonio Francioso, Luciana Mosca, Paula Silva Molecules. 2020 Sep; 25(17): 3809. Published online 2020 Aug 21. doi: 10.3390/molecules25173809 PMCID: PMC7504512
Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems Henrique Silvano Arruda, Eric Keven Silva, Nayara Macêdo Peixoto Araujo, Gustavo Araujo Pereira, Glaucia Maria Pastore, Mario Roberto Marostica Junior Molecules. 2021 May; 26(9): 2632. Published online 2021 Apr 30. doi: 10.3390/molecules26092632 PMCID: PMC8125576
Chemopreventive Effect of Dietary Anthocyanins against Gastrointestinal Cancers: A Review of Recent Advances and Perspectives K.V. Surangi Dharmawansa, David W. Hoskin, H. P. Vasantha Rupasinghe Int J Mol Sci. 2020 Sep; 21(18): 6555. Published online 2020 Sep 8. doi: 10.3390/ijms21186555 PMCID: PMC7554903
Anthocyanins as Antidiabetic Agents—In Vitro and In Silico Approaches of Preventive and Therapeutic Effects Hélder Oliveira, Ana Fernandes, Natércia F. Brás, Nuno Mateus, Victor de Freitas, Iva Fernandes Molecules. 2020 Sep; 25(17): 3813. Published online 2020 Aug 21. doi: 10.3390/molecules25173813 PMCID: PMC7504281
Anthocyanins in Whole Grain Cereals and Their Potential Effect on Health Alyssa Francavilla, Iris J. Joye Nutrients. 2020 Oct; 12(10): 2922. Published online 2020 Sep 24. doi: 10.3390/nu12102922 PMCID: PMC7598678
The Anti-Neuroinflammatory Role of Anthocyanins and Their Metabolites for the Prevention and Treatment of Brain Disorders Joana F. Henriques, Diana Serra, Teresa C. P. Dinis, Leonor M. Almeida Int J Mol Sci. 2020 Nov; 21(22): 8653. Published online 2020 Nov 17. doi: 10.3390/ijms21228653 PMCID: PMC7696928
Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention Zorița Diaconeasa, Ioana Știrbu, Jianbo Xiao, Nicolae Leopold, Zayde Ayvaz, Corina Danciu, Huseyin Ayvaz, Andreea Stǎnilǎ, Mǎdǎlina Nistor, Carmen Socaciu Biomedicines. 2020 Sep; 8(9): 336. Published online 2020 Sep 9. doi: 10.3390/biomedicines8090336 PMCID: PMC7555344
Anthocyanins and Their Metabolites as Therapeutic Agents for Neurodegenerative Disease Aimee N. Winter, Paula C. Bickford Antioxidants (Basel) 2019 Sep; 8(9): 333. Published online 2019 Aug 22. doi: 10.3390/antiox8090333 PMCID: PMC6770078
Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits Hock Eng Khoo, Azrina Azlan, Sou Teng Tang, See Meng Lim Food Nutr Res. 2017; 61(1): 1361779. Published online 2017 Aug 13. doi: 10.1080/16546628.2017.1361779 PMCID: PMC5613902
Exploring the Applications of the Photoprotective Properties of Anthocyanins in Biological Systems Hélder Oliveira, Patrícia Correia, Ana Rita Pereira, Paula Araújo, Nuno Mateus, Victor de Freitas, Joana Oliveira, Iva Fernandes Int J Mol Sci. 2020 Oct; 21(20): 7464. Published online 2020 Oct 10. doi: 10.3390/ijms21207464 PMCID: PMC7589295
Dietary Effects of Anthocyanins in Human Health: A Comprehensive Review Ana C. Gonçalves, Ana R. Nunes, Amílcar Falcão, Gilberto Alves, Luís R. Silva Pharmaceuticals (Basel) 2021 Jul; 14(7): 690. Published online 2021 Jul 18. doi: 10.3390/ph14070690 PMCID: PMC8308553
Anthocyanins: From Mechanisms of Regulation in Plants to Health Benefits in Foods Francesca Cappellini, Alessandra Marinelli, Marta Toccaceli, Chiara Tonelli, Katia Petroni Front Plant Sci. 2021; 12: 748049. Published online 2021 Oct 28. doi: 10.3389/fpls.2021.748049 PMCID: PMC8580863
The Anti-inflammatory Effects of Dietary Anthocyanins against Ulcerative Colitis Shiyu Li, Binning Wu, Wenyi Fu, Lavanya Reddivari Int J Mol Sci. 2019 May; 20(10): 2588. Published online 2019 May 27. doi: 10.3390/ijms20102588 PMCID: PMC6567294
Radical Scavenging and Anti-Inflammatory Activities of Representative Anthocyanin Groupings from Pigment-Rich Fruits and Vegetables Federica Blando, Nadia Calabriso, Helge Berland, Gabriele Maiorano, Carmela Gerardi, Maria Annunziata Carluccio, Øyvind M. Andersen Int J Mol Sci. 2018 Jan; 19(1): 169. Published online 2018 Jan 6. doi: 10.3390/ijms19010169 PMCID: PMC5796118
The Potential of High-Anthocyanin Purple Rice as a Functional Ingredient in Human Health Supapohn Yamuangmorn, Chanakan Prom-u-Thai Antioxidants (Basel) 2021 Jun; 10(6): 833. Published online 2021 May 24. doi: 10.3390/antiox10060833 PMCID: PMC8225073
A botanical containing freeze dried açai pulp promotes healthy aging and reduces oxidative damage in sod1 knockdown flies Mara Laslo, Xiaoping Sun, Cheng-Te Hsiao, Wells W. Wu, Rong-Fong Shen, Sige Zou Age (Dordr) 2013 Aug; 35(4): 1117–1132. Published online 2012 May 26. doi: 10.1007/s11357-012-9437-3 PMCID: PMC3705126
Characterization of Bioactive Compounds in Tunisian Bitter Orange (Citrus aurantium L.) Peel and Juice and Determination of Their Antioxidant Activities Iness Jabri karoui, Brahim Marzouk Biomed Res Int. 2013; 2013: 345415. Published online 2013 Jun 13. doi: 10.1155/2013/345415 PMCID: PMC3697287
Ameliorative effects of thyme and calendula extracts alone or in combination against aflatoxins-induced oxidative stress and genotoxicity in rat liver Sekena H. Abdel-Aziem, Aziza M. Hassan, Ezzeldein S. El-Denshary, Mohamed A. Hamzawy, Fathia A. Mannaa, Mosaad A. Abdel-Wahhab Cytotechnology. 2014 May; 66(3): 457–470. Published online 2013 Oct 6. doi: 10.1007/s10616-013-9598-7 PMCID: PMC3973790
Food Healing Science - AZSP Healing

Popular posts from this blog

Pediococcus acidilactici

  Related Articles Antidiabetic Effects of Pediococcus acidilactici pA1c on HFD-Induced Mice Miriam Cabello-Olmo, María Oneca, María José Pajares, Maddalen Jiménez, Josune Ayo, Ignacio J. Encío, Miguel Barajas, Miriam Araña Nutrients. 2022 Feb; 14(3): 692. Published online 2022 Feb 7. doi: 10.3390/nu14030692 PMCID: PMC8839473 Anti-Obesity Efficacy of Pediococcus acidilactici MNL5 in Canorhabditis elegans Gut Model Kaliyan Barathikannan, Ramachandran Chelliah, Fazle Elahi, Akanksha Tyagi, Vijayalakshmi Selvakumar, Paul Agastian, Mariadhas Valan Arasu, Deog-Hawn Oh Int J Mol Sci. 2022 Feb; 23(3): 1276. Published online 2022 Jan 24. doi: 10.3390/ijms23031276 PMCID: PMC8835910 Lipid-Lowering Effects of Pediococcus acidilactici M76 Isolated from Korean Traditional Makgeolli in High Fat Diet-Induced Obese Mice Yeon-Jeong Moon, Sang-Ho Baik, Youn-Soo Cha Nutrients. 2014 Mar; 6(3): 1016–1028. Published online 2014 Mar 7. doi: 10.3390/nu6031016 PMCID: PMC396717

Zen

Zen (Chinese: 禪; pinyin: Chán; Japanese: 禅, romanized: zen; Korean: 선, romanized: Seon; Vietnamese: Thiền) is a school of Mahayana Buddhism that originated in China during the Tang dynasty, known as the Chan School (Chánzong 禪宗), and later developed into various sub-schools and branches. From China, Chán spread south to Vietnam and became Vietnamese Thiền, northeast to Korea to become Seon Buddhism, and east to Japan, becoming Japanese Zen. The term Zen is derived from the Japanese pronunciation of the Middle Chinese word 禪 (chán), an abbreviation of 禪那 (chánnà), which is a Chinese transliteration of the Sanskrit word dhyāna ("meditation"). Zen emphasizes rigorous self-restraint, meditation-practice, insight into the nature of mind (見性, Ch. jiànxìng, Jp. kensho, "perceiving the true nature") and nature of things (without arrogance or egotism), and the personal expression of this insight in daily life, especially for the benefit of others. As such, it de-em

Sulforaphane

Related Articles Houghton C. A. (2019). Sulforaphane: Its "Coming of Age" as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease. Oxidative medicine and cellular longevity, 2019, 2716870. https://doi.org/10.1155/2019/2716870 Santín-Márquez, R., Alarcón-Aguilar, A., López-Diazguerrero, N. E., Chondrogianni, N., & Königsberg, M. (2019). Sulforaphane - role in aging and neurodegeneration. GeroScience, 41(5), 655–670. https://doi.org/10.1007/s11357-019-00061-7 Mahn, A.; Castillo, A. Potential of Sulforaphane as a Natural Immune System Enhancer: A Review. Molecules 2021, 26, 752. https://doi.org/10.3390/molecules26030752 Liang J, Jahraus B, Balta E, Ziegler JD, Hübner K, Blank N, Niesler B, Wabnitz GH and Samstag Y (2018) Sulforaphane Inhibits Inflammatory Responses of Primary Human T-Cells by Increasing ROS and Depleting Glutathione. Front. Immunol. 9:2584. doi: 10.3389/fimmu.2018.02584 Zimme

TRPV1

The transient receptor potential cation channel subfamily V member 1 (TrpV1), also known as the capsaicin receptor and the vanilloid receptor 1, is a protein that, in humans, is encoded by the TRPV1 gene. It was the first isolated member of the transient receptor potential vanilloid receptor proteins that in turn are a sub-family of the transient receptor potential protein group. This protein is a member of the TRPV group of transient receptor potential family of ion channels. The function of TRPV1 is detection and regulation of body temperature. In addition, TRPV1 provides a sensation of scalding heat and pain (nociception). In primary afferent sensory neurons, it cooperates with TRPA1 (a chemical irritant receptor) to mediate the detection of noxious environmental stimuli.

Prenatal back pain

Ilium bones are tend to open at superior SI joint articulation , and may have a mobility issue at .... For therapists, Learn More Human Body Science For customers, Book an Appointment with AZ Sportivo Performance Choose AZSP Bodywork Service from Your Health Condition AZSP Bodywork Service Comparison

Cancer Risk: Acrylamide AGEs

Minimizing Cancer Risk: Understanding the Relationship Between Acrylamide, Advanced Glycation End Products, and Cooking Tips Tweet Follow @AZSPerformance In recent years, concerns about cancer risk associated with dietary choices have gained significant attention. Researchers have identified two substances, acrylamide and advanced glycation end products (AGEs), that are formed during certain cooking processes and have been linked to an increased risk of cancer. In this article, we will explore the connection between acrylamide, AGEs, and cancer, as well as provide practical tips to help you reduce your exposure to these potentially harmful compounds. Acrylamide and Cancer Risk: Acrylamide is a chemical compound that forms naturally during high-temperature cooking methods, such as frying, baking, and roasting. It is commonly found in foods like potato