Skip to main content

Streptococcus thermophilus

 

Streptococcus thermophilus also known as Streptococcus salivarius subsp. thermophilus is a gram-positive bacterium, and a fermentative facultative anaerobe, of the viridans group. It tests negative for cytochrome, oxidase, and catalase, and positive for alpha-hemolytic activity. It is non-motile and does not form endospores. S. thermophilus is fimbriated.

It is also classified as a lactic acid bacterium. S. thermophilus is found in fermented milk products and is generally used in the production of yogurt, alongside Lactobacillus delbrueckii subsp. bulgaricus. The two species are synergistic, and S. thermophilus probably provides L. d. bulgaricus with folic acid and formic acid, which it uses for purine synthesis. S. thermophilus has an optimal growth temperature range of 35–42 °C, while L. d. bulgaricus has an optimal range of 43–46 °C.

At least 26 strains of S. thermophilus have been identified and had their genomes sequenced.


Effect of heat-killed Streptococcus thermophilus on type 2 diabetes rats Xiangyang Gao, Fei Wang, Peng Zhao, Rong Zhang, Qiang Zeng PeerJ. 2019; 7: e7117. Published online 2019 Jun 13. doi: 10.7717/peerj.7117 PMCID: PMC6571132
Inhibition effect of Bifidobacterium longum, Lactobacillus acidophilus, Streptococcus thermophilus and Enterococcus faecalis and their related products on human colonic smooth muscle in vitro Jing Gong, Tao Bai, Lei Zhang, Wei Qian, Jun Song, Xiaohua Hou PLoS One. 2017; 12(12): e0189257. Published online 2017 Dec 7. doi: 10.1371/journal.pone.0189257 PMCID: PMC5720742
Streptococcus thermophilus APC151 Strain Is Suitable for the Manufacture of Naturally GABA-Enriched Bioactive Yogurt Linares Daniel M., O’Callaghan Tom F., O’Connor Paula M., Ross R. P., Stanton Catherine Frontiers in Microbiology VOLUME7 2016 DOI10.3389/fmicb.2016.01876 ISSN1664-302X

PROBIOTICS - TYPES AND EFFECTS OF LACTIC ACID BACTERIA - AZ Sportivo Performance & AZSP Healing

Popular posts from this blog

TRPV1

The transient receptor potential cation channel subfamily V member 1 (TrpV1), also known as the capsaicin receptor and the vanilloid receptor 1, is a protein that, in humans, is encoded by the TRPV1 gene. It was the first isolated member of the transient receptor potential vanilloid receptor proteins that in turn are a sub-family of the transient receptor potential protein group. This protein is a member of the TRPV group of transient receptor potential family of ion channels. The function of TRPV1 is detection and regulation of body temperature. In addition, TRPV1 provides a sensation of scalding heat and pain (nociception). In primary afferent sensory neurons, it cooperates with TRPA1 (a chemical irritant receptor) to mediate the detection of noxious environmental stimuli.

Zen

Zen (Chinese: 禪; pinyin: Chán; Japanese: 禅, romanized: zen; Korean: 선, romanized: Seon; Vietnamese: Thiền) is a school of Mahayana Buddhism that originated in China during the Tang dynasty, known as the Chan School (Chánzong 禪宗), and later developed into various sub-schools and branches. From China, Chán spread south to Vietnam and became Vietnamese Thiền, northeast to Korea to become Seon Buddhism, and east to Japan, becoming Japanese Zen. The term Zen is derived from the Japanese pronunciation of the Middle Chinese word 禪 (chán), an abbreviation of 禪那 (chánnà), which is a Chinese transliteration of the Sanskrit word dhyāna ("meditation"). Zen emphasizes rigorous self-restraint, meditation-practice, insight into the nature of mind (見性, Ch. jiànxìng, Jp. kensho, "perceiving the true nature") and nature of things (without arrogance or egotism), and the personal expression of this insight in daily life, especially for the benefit of others. As such, it de-em...

Sulforaphane

Related Articles Houghton C. A. (2019). Sulforaphane: Its "Coming of Age" as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease. Oxidative medicine and cellular longevity, 2019, 2716870. https://doi.org/10.1155/2019/2716870 Santín-Márquez, R., Alarcón-Aguilar, A., López-Diazguerrero, N. E., Chondrogianni, N., & Königsberg, M. (2019). Sulforaphane - role in aging and neurodegeneration. GeroScience, 41(5), 655–670. https://doi.org/10.1007/s11357-019-00061-7 Mahn, A.; Castillo, A. Potential of Sulforaphane as a Natural Immune System Enhancer: A Review. Molecules 2021, 26, 752. https://doi.org/10.3390/molecules26030752 Liang J, Jahraus B, Balta E, Ziegler JD, Hübner K, Blank N, Niesler B, Wabnitz GH and Samstag Y (2018) Sulforaphane Inhibits Inflammatory Responses of Primary Human T-Cells by Increasing ROS and Depleting Glutathione. Front. Immunol. 9:2584. doi: 10.3389/fimmu.2018.02584 Zimme...