Skip to main content

pyrrolysine



Improved pyrrolysine biosynthesis through phage assisted non-continuous directed evolution of the complete pathway Joanne M. L. Ho, Corwin A. Miller, Kathryn A. Smith, Jacob R. Mattia, Matthew R. Bennett Nat Commun. 2021; 12: 3914. Published online 2021 Jun 24. doi: 10.1038/s41467-021-24183-9 PMCID: PMC8225853
Live Cell Imaging of Bioorthogonally Labelled Proteins Generated With a Single Pyrrolysine tRNA Gene Noa Aloush, Tomer Schvartz, Andres I. König, Sarit Cohen, Eugene Brozgol, Benjamin Tam, Dikla Nachmias, Oshrit Ben-David, Yuval Garini, Natalie Elia, Eyal Arbely Sci Rep. 2018; 8: 14527. Published online 2018 Sep 28. doi: 10.1038/s41598-018-32824-1 PMCID: PMC6162220
Orthogonality of Pyrrolysine tRNA in the Xenopus oocyte Daniel T. Infield, John D. Lueck, Jason D. Galpin, Grace D. Galles, Christopher A. Ahern Sci Rep. 2018; 8: 5166. Published online 2018 Mar 26. doi: 10.1038/s41598-018-23201-z PMCID: PMC5980078
Designer tRNAs for efficient incorporation of non-canonical amino acids by the pyrrolysine system in mammalian cells Robert Serfling, Christian Lorenz, Maja Etzel, Gerda Schicht, Thore Böttke, Mario Mörl, Irene Coin Nucleic Acids Res. 2018 Jan 9; 46(1): 1–10. Published online 2017 Nov 21. doi: 10.1093/nar/gkx1156 PMCID: PMC5758916
Corrigendum to “Unique Characteristics of the Pyrrolysine System in the 7th Order of Methanogens: Implications for the Evolution of a Genetic Code Expansion Cassette” Guillaume Borrel, Nadia Gaci, Pierre Peyret, Paul W. O'Toole, Simonetta Gribaldo, Jean-François Brugère Archaea. 2015; 2015: 941836. Published online 2015 Feb 2. doi: 10.1155/2015/941836Corrects: Archaea. 2014; 2014: 374146. PMCID: PMC4333192
Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine Guillaume Borrel, Nicolas Parisot, Hugh MB Harris, Eric Peyretaillade, Nadia Gaci, William Tottey, Olivier Bardot, Kasie Raymann, Simonetta Gribaldo, Pierre Peyret, Paul W O’Toole, Jean-François Brugère BMC Genomics. 2014; 15: 679. Published online 2014 Aug 13. doi: 10.1186/1471-2164-15-679 PMCID: PMC4153887
Unique Characteristics of the Pyrrolysine System in the 7th Order of Methanogens: Implications for the Evolution of a Genetic Code Expansion Cassette Guillaume Borrel, Nadia Gaci, Pierre Peyret, Paul W. O'Toole, Simonetta Gribaldo, Jean-François Brugère Archaea. 2014; 2014: 374146. Published online 2014 Jan 27. doi: 10.1155/2014/374146Correction in: Archaea. 2015; 2015: 941836. PMCID: PMC3941956
Effects of using coding potential, sequence conservation and mRNA structure conservation for predicting pyrrolysine containing genes Christian Theil Have, Sine Zambach, Henning Christiansen BMC Bioinformatics. 2013; 14: 118. Published online 2013 Apr 4. doi: 10.1186/1471-2105-14-118 PMCID: PMC3639795
PylSn and the Homologous N-terminal Domain of Pyrrolysyl-tRNA Synthetase Bind the tRNA That Is Essential for the Genetic Encoding of Pyrrolysine Ruisheng Jiang, Joseph A. Krzycki J Biol Chem. 2012 Sep 21; 287(39): 32738–32746. Published online 2012 Jul 31. doi: 10.1074/jbc.M112.396754 PMCID: PMC3463324
An Asymmetric Synthesis of L-Pyrrolysine Margaret L. Wong, Ilia A. Guzei, Laura L. Kiessling Org Lett. Author manuscript; available in PMC 2013 Mar 16.Published in final edited form as: Org Lett. 2012 Mar 16; 14(6): 1378–1381. Published online 2012 Mar 6. doi: 10.1021/ol300045c PMCID: PMC3326344
Functional context, biosynthesis, and genetic encoding of pyrrolysine Marsha A. Gaston, Ruisheng Jiang, Joseph A. Krzycki Curr Opin Microbiol. Author manuscript; available in PMC 2012 Jun 1.Published in final edited form as: Curr Opin Microbiol. 2011 Jun; 14(3): 342–349. Published online 2011 May 5. doi: 10.1016/j.mib.2011.04.001 PMCID: PMC3119745
The Pyrrolysine Translational Machinery as a Genetic-Code Expansion Tool Tomasz Fekner, Michael K. Chan Curr Opin Chem Biol. Author manuscript; available in PMC 2012 Nov 2.Published in final edited form as: Curr Opin Chem Biol. 2011 Jun; 15(3): 387–391. Published online 2011 Apr 19. doi: 10.1016/j.cbpa.2011.03.007 PMCID: PMC3487393
The complete biosynthesis of the genetically encoded amino acid pyrrolysine from lysine Marsha A. Gaston, Liwen Zhang, Kari B. Green-Church, Joseph A. Krzycki Nature. Author manuscript; available in PMC 2011 Sep 30.Published in final edited form as: Nature. 2011 Mar 31; 471(7340): 647–650. doi: 10.1038/nature09918 PMCID: PMC3070376
Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea Michael Rother, Joseph A. Krzycki Archaea. 2010; 2010: 453642. Published online 2010 Aug 17. doi: 10.1155/2010/453642 PMCID: PMC2933860
N6-(2-(R)-Propargylglycyl)lysine as a Clickable Pyrrolysine Mimic Xin Li, Dr. Tomasz Fekner, Prof. Michael K. Chan Chem Asian J. Author manuscript; available in PMC 2012 Dec 7.Published in final edited form as: Chem Asian J. 2010 Aug 2; 5(8): 1765–1769. doi: 10.1002/asia.201000205 PMCID: PMC3517070
Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systems Jing Yuan, Patrick O’Donoghue, Alex Ambrogelly, Sarath Gundllapalli, R. Lynn Sherrer, Sotiria Palioura, Miljan Simonović, Dieter Söll FEBS Lett. Author manuscript; available in PMC 2011 Jan 21.Published in final edited form as: FEBS Lett. 2010 Jan 21; 584(2): 342–349. doi: 10.1016/j.febslet.2009.11.005 PMCID: PMC2795046
The appearance of pyrrolysine in tRNAHis guanylyltransferase by neutral evolution Ilka U. Heinemann, Patrick O'Donoghue, Catherine Madinger, Jack Benner, Lennart Randau, Christopher J. Noren, Dieter Söll Proc Natl Acad Sci U S A. 2009 Dec 15; 106(50): 21103–21108. Published online 2009 Nov 24. doi: 10.1073/pnas.0912072106 PMCID: PMC2795538
Translation termination in pyrrolysine-utilizing archaea Elena Alkalaeva, Boris Eliseev, Alexandre Ambrogelly, Peter Vlasov, Fyodor A. Kondrashov, Sharath Gundllapalli, Lyudmila Frolova, Dieter Söll, Lev Kisselev FEBS Lett. Author manuscript; available in PMC 2010 Apr 21.Published in final edited form as: FEBS Lett. 2009 Nov 3; 583(21): 3455–3460. Published online 2009 Sep 29. doi: 10.1016/j.febslet.2009.09.044 PMCID: PMC2857517
Misacylation of pyrrolysine tRNA in vitro and in vivo Sarath Gundllapalli, Alexandre Ambrogelly, Takuya Umehara, Darrick Li, Carla Polycarpo, Dieter Söll FEBS Lett. Author manuscript; available in PMC 2009 Oct 15.Published in final edited form as: FEBS Lett. 2008 Oct 15; 582(23-24): 3353–3358. Published online 2008 Sep 5. doi: 10.1016/j.febslet.2008.08.027 PMCID: PMC2577721
High content of proteins containing 21st and 22nd amino acids, selenocysteine and pyrrolysine, in a symbiotic deltaproteobacterium of gutless worm Olavius algarvensis Yan Zhang, Vadim N. Gladyshev Nucleic Acids Res. 2007 Aug; 35(15): 4952–4963. Published online 2007 Jul 11. doi: 10.1093/nar/gkm514 PMCID: PMC1976440
Pyrrolysine is not hardwired for cotranslational insertion at UAG codons Alexandre Ambrogelly, Sarath Gundllapalli, Stephanie Herring, Carla Polycarpo, Carina Frauer, Dieter Söll Proc Natl Acad Sci U S A. 2007 Feb 27; 104(9): 3141–3146. Published online 2007 Feb 20. doi: 10.1073/pnas.0611634104 PMCID: PMC1805618
Recognition of pyrrolysine tRNA by the Desulfitobacterium hafniense pyrrolysyl-tRNA synthetase Stephanie Herring, Alexandre Ambrogelly, Carla R. Polycarpo, Dieter Söll Nucleic Acids Res. 2007 Feb; 35(4): 1270–1278. Published online 2007 Jan 31. doi: 10.1093/nar/gkl1151 PMCID: PMC1851642
A natural genetic code expansion cassette enables transmissible biosynthesis and genetic encoding of pyrrolysine David G. Longstaff, Ross C. Larue, Joseph E. Faust, Anirban Mahapatra, Liwen Zhang, Kari B. Green-Church, Joseph A. Krzycki Proc Natl Acad Sci U S A. 2007 Jan 16; 104(3): 1021–1026. Published online 2007 Jan 4. doi: 10.1073/pnas.0610294104 PMCID: PMC1783357
Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase Carla R. Polycarpo, Stephanie Herring, Amélie Bérubé, John L. Wood, Dieter Söll, Alexandre Ambrogelly FEBS Lett. Author manuscript; available in PMC 2007 Mar 8.Published in final edited form as: FEBS Lett. 2006 Dec 11; 580(28-29): 6695–6700. Published online 2006 Nov 20. doi: 10.1016/j.febslet.2006.11.028 PMCID: PMC1817836
An aminoacyl-tRNA synthetase that specifically activates pyrrolysine Carla Polycarpo, Alexandre Ambrogelly, Amélie Bérubé, SusAnn M. Winbush, James A. McCloskey, Pamela F. Crain, John L. Wood, Dieter Söll Proc Natl Acad Sci U S A. 2004 Aug 24; 101(34): 12450–12454. Published online 2004 Aug 16. doi: 10.1073/pnas.0405362101 PMCID: PMC515082
Atypical archaeal tRNA pyrrolysine transcript behaves towards EF-Tu as a typical elongator tRNA Anne Théobald-Dietrich, Magali Frugier, Richard Giegé, Joëlle Rudinger-Thirion Nucleic Acids Res. 2004; 32(3): 1091–1096. Published online 2004 Feb 10. doi: 10.1093/nar/gkh266 PMCID: PMC373401
Food Healing Science - AZSP Healing

Popular posts from this blog

Pediococcus acidilactici

  Related Articles Antidiabetic Effects of Pediococcus acidilactici pA1c on HFD-Induced Mice Miriam Cabello-Olmo, María Oneca, María José Pajares, Maddalen Jiménez, Josune Ayo, Ignacio J. Encío, Miguel Barajas, Miriam Araña Nutrients. 2022 Feb; 14(3): 692. Published online 2022 Feb 7. doi: 10.3390/nu14030692 PMCID: PMC8839473 Anti-Obesity Efficacy of Pediococcus acidilactici MNL5 in Canorhabditis elegans Gut Model Kaliyan Barathikannan, Ramachandran Chelliah, Fazle Elahi, Akanksha Tyagi, Vijayalakshmi Selvakumar, Paul Agastian, Mariadhas Valan Arasu, Deog-Hawn Oh Int J Mol Sci. 2022 Feb; 23(3): 1276. Published online 2022 Jan 24. doi: 10.3390/ijms23031276 PMCID: PMC8835910 Lipid-Lowering Effects of Pediococcus acidilactici M76 Isolated from Korean Traditional Makgeolli in High Fat Diet-Induced Obese Mice Yeon-Jeong Moon, Sang-Ho Baik, Youn-Soo Cha Nutrients. 2014 Mar; 6(3): 1016–1028. Published online 2014 Mar 7. doi: 10.3390/nu6031016 PMCID: PMC396717

Zen

Zen (Chinese: 禪; pinyin: Chán; Japanese: 禅, romanized: zen; Korean: 선, romanized: Seon; Vietnamese: Thiền) is a school of Mahayana Buddhism that originated in China during the Tang dynasty, known as the Chan School (Chánzong 禪宗), and later developed into various sub-schools and branches. From China, Chán spread south to Vietnam and became Vietnamese Thiền, northeast to Korea to become Seon Buddhism, and east to Japan, becoming Japanese Zen. The term Zen is derived from the Japanese pronunciation of the Middle Chinese word 禪 (chán), an abbreviation of 禪那 (chánnà), which is a Chinese transliteration of the Sanskrit word dhyāna ("meditation"). Zen emphasizes rigorous self-restraint, meditation-practice, insight into the nature of mind (見性, Ch. jiànxìng, Jp. kensho, "perceiving the true nature") and nature of things (without arrogance or egotism), and the personal expression of this insight in daily life, especially for the benefit of others. As such, it de-em

Sulforaphane

Related Articles Houghton C. A. (2019). Sulforaphane: Its "Coming of Age" as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease. Oxidative medicine and cellular longevity, 2019, 2716870. https://doi.org/10.1155/2019/2716870 Santín-Márquez, R., Alarcón-Aguilar, A., López-Diazguerrero, N. E., Chondrogianni, N., & Königsberg, M. (2019). Sulforaphane - role in aging and neurodegeneration. GeroScience, 41(5), 655–670. https://doi.org/10.1007/s11357-019-00061-7 Mahn, A.; Castillo, A. Potential of Sulforaphane as a Natural Immune System Enhancer: A Review. Molecules 2021, 26, 752. https://doi.org/10.3390/molecules26030752 Liang J, Jahraus B, Balta E, Ziegler JD, Hübner K, Blank N, Niesler B, Wabnitz GH and Samstag Y (2018) Sulforaphane Inhibits Inflammatory Responses of Primary Human T-Cells by Increasing ROS and Depleting Glutathione. Front. Immunol. 9:2584. doi: 10.3389/fimmu.2018.02584 Zimme

TRPV1

The transient receptor potential cation channel subfamily V member 1 (TrpV1), also known as the capsaicin receptor and the vanilloid receptor 1, is a protein that, in humans, is encoded by the TRPV1 gene. It was the first isolated member of the transient receptor potential vanilloid receptor proteins that in turn are a sub-family of the transient receptor potential protein group. This protein is a member of the TRPV group of transient receptor potential family of ion channels. The function of TRPV1 is detection and regulation of body temperature. In addition, TRPV1 provides a sensation of scalding heat and pain (nociception). In primary afferent sensory neurons, it cooperates with TRPA1 (a chemical irritant receptor) to mediate the detection of noxious environmental stimuli.

Prenatal back pain

Ilium bones are tend to open at superior SI joint articulation , and may have a mobility issue at .... For therapists, Learn More Human Body Science For customers, Book an Appointment with AZ Sportivo Performance Choose AZSP Bodywork Service from Your Health Condition AZSP Bodywork Service Comparison

Cancer Risk: Acrylamide AGEs

Minimizing Cancer Risk: Understanding the Relationship Between Acrylamide, Advanced Glycation End Products, and Cooking Tips Tweet Follow @AZSPerformance In recent years, concerns about cancer risk associated with dietary choices have gained significant attention. Researchers have identified two substances, acrylamide and advanced glycation end products (AGEs), that are formed during certain cooking processes and have been linked to an increased risk of cancer. In this article, we will explore the connection between acrylamide, AGEs, and cancer, as well as provide practical tips to help you reduce your exposure to these potentially harmful compounds. Acrylamide and Cancer Risk: Acrylamide is a chemical compound that forms naturally during high-temperature cooking methods, such as frying, baking, and roasting. It is commonly found in foods like potato